
Chapter 7
Input–Output Formulation of Optical Cavities

Abstract In preceding chapters we have used a master-equation treatment to calcu-
late the photon statistics inside an optical cavity when the internal field is damped.
This approach is based on treating the field external to the cavity, to which the sys-
tem is coupled, as a heat bath. The heat bath is simply a passive system with which
the system gradually comes into equilibrium. In this chapter we will explicitly treat
the heat bath as the external cavity field, our object being to determine the effect of
the intracavity dynamics on the quantum statistics of the output field. Within this
perspective we will also treat the field input to the cavity explicitly. This approach is
necessary in the case of squeezed state generation due to interference effects at the
interface between the intracavity field and the output field.

An input–output formulation is also required if the input field state is specified as
other than simply a vacuum or thermal state. In particular, we will want to discuss
the case of an input squeezed state.

7.1 Cavity Modes

We will consider a single cavity mode interacting with an external multi-mode field.
To being with we will assume the cavity has only one partially transmitting mirror
that couples the intracavity mode to the external field. The geometry of the cav-
ity and the nature of the dielectric interface at the mirror determines which output
modes couple to the intracavity mode. It is usually the case that the emission is
strongly direction. We will assume that the only modes that are excited have the
same plane polarisation and are all propagating in the same direction, which we
take to be the positive x-direction. The positive frequency components of the quan-
tum electric field for these modes are then

E(+)(x,t) = i
∞

∑
n=0

(
h̄ωn

2ε0V

)1/2

bne−iωn(t−x/c) (7.1)

In ignoring all the other modes, we are implicitly assuming that they remain in the
vacuum state.
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128 7 Input–Output Formulation of Optical Cavities

Let us further assume that all excited modes of this form have frequencies cen-
tered on the cavity resonance frequency and we call this the carrier frequency of
Ω >> 1. Then we can approximate the positive frequency components by

E(+)(x,t) = i
(

h̄Ωn

2ε0Ac

)1/2√ c
L

∞

∑
n=0

bne−iωn(t−x/c) (7.2)

where A is a characteristic transverse area. This operator has dimensions of electric
field. In order to simplify the dimensions we now define a field operator that has di-
mensions of s−1/2. Taking the continuum limit we thus define the positive frequency
operator for modes propagating in the positive x–direction,

b(x, t) = e−iΩ(t−x/c) 1√
2π

∞∫

−∞

dωb(ω)e−iω(t−x/c) (7.3)

where we have made a change of variable ω #→Ω+ω′ and used the fact that Ω >> 1
to set the lower limit of integration to minus infinity, and

[b(ω1),b†(ω2)] = δ (ω1−ω2) (7.4)

In this form the moment n(x,t) = ⟨b†(x,t)b(x, t)⟩ has units of s−1. This moment
determines the probability per unit time (the count rate) to count a photon at space-
time point (x, t).

Consider now the single side cavity geometry depicted in Fig. 7.1. The field op-
erators at some external position, b(t) = b(x > 0, t)eiΩt and b†(t) = b†(x > 0,t)e−iΩt

can be taken to describe the field, in the interaction picture with frequency Ω. As the
cavity is confined to some region of space, we need to determine how the field out-
side the cavity responds to the presence of the cavity and any matter it may contain.
The interaction Hamiltonian between the cavity field, represented by the harmonic
oscillator annihilation and creation operators a, a†, and the external field in the ro-
tating wave approximation is given by (6.14). Restricting the sum to only the modes
of interest and taking the continuum limit, we can write this as

V (t) = ih̄

∞∫

−∞

dωg(ω)[b(ω)a†−ab†(ω)] (7.5)

Fig. 7.1 A schematic representation of the cavity field and the input and output fields for a single-
sided cavity
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with [a,a†] = 1 and g(ω) is the coupling strength as a function of frequency which
is typically peaked around ω = 0 (which corresponds to ω = Ω in the original non-
rotating frame). In fact g(ω) is the Fourier transform of a spatially varying coupling
constant that describes the local nature of the cavity/field interaction (see [1]). If
the cavity contains matter, the field inside the cavity may acquire some non trivial
dynamics which then forces the external fields to have a time dependence differ-
ent from the free field dynamics. This leads to an explicit time dependence in the
frequency space operators, b(t,ω), in the Heisenberg picture.

We now follow the approach of Collett and Gardiner [1]. The Heisenberg equa-
tion of motion for b(t,ω), in the interaction picture, is

ḃ(t,ω) =−iωb(ω)+ g(ω)a (7.6)

The solution to this equation can be written in two ways depending on weather
we choose to solve in terms of the initial conditions at time t0 < t (the input) or
in terms of the final conditions at times t1 > t, (the output). The two solutions are
respectively

b(t,ω) = e−iω(t−t0)b0(ω)+ g(ω)
t∫

0

e−iω(t−t′)a(t ′)dt ′ (7.7)

where t0 < t and b0(ω) = b(t = t0,ω), and

b(t,ω) = e−iω(t−t1)b1(ω)−g(ω)
t1∫

t

e−iω(t−t′)a(t ′)dt ′ (7.8)

where t < t1 and b1(ω) = b(t = t1,ω). In physical terms b0(ω) and b1(ω) are usually
specified at −∞ and +∞ respectively, that is, for times such that the field is simply
a free field, however here we only require t0 < t < t1.

The cavity field operator obeys the equation

ȧ =− i
h
[HS,a]−

∞∫

−∞

dω g(ω)b(t,ω) (7.9)

where HS is the Hamiltonian for the cavity field alone. In terms of the solution
with initial conditions, (7.7), this equation becomes

ȧ =− i
h̄
[HS,a]−

∞∫

−∞

dω g(ω)e−iω(t−t0)b0(ω)

−
∞∫

−∞

dω g(ω)2
t∫

t0

e−iω(t−t′)a(t ′) (7.10)
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We now assume that g(ω) is independent of frequency over a wide range of fre-
quencies around ω = 0 (that is around ω = Ω in non rotating frame). This is the first
approximation we need to get a Markov quantum stochastic process. Thus we set

g(ω)2 = γ/2π (7.11)

We also define an input field operator by

aIN(t) =− 1
2π

∞∫

−∞

dωe−iω(t−t0)b0(ω) (7.12)

(the minus sign is a phase convention: left-going fields are negative, right-going
fields are positive). Using the relation

∞∫

−∞

dωe−iω(t−t′) = 2πδ (t− t ′) (7.13)

the input field may be shown to satisfy the commutation relations

[aIN(t),a†
IN(t ′) = δ (t− t ′) (7.14)

When (7.13) is achieved as the limit of an integral of a function which goes smoothly
to zero at ±∞ (for example, a Gaussian), the following result also holds

t∫

t0

f (t ′)δ(t− t ′)dt ′ =
t1∫

t

f (t ′)δ(t− t ′)dt ′ =
1
2

f (t), (t0 < t < t1) (7.15)

Interchanging the order of time and frequency integration in the last term in (7.10)
and using (7.15) gives

ȧ(t) =− i
h̄
[a(t),HSYS]− γ

2
a(t)+

√γaIN(t) (7.16)

Equation (7.16) is a quantum stochastic differential equation (qsde) for the intra-
cavity field, a(t). The quantum noise term appears explicitly as the input field to the
cavity.

In a similar manner we may substitute the solution in terms of final conditions,
(7.8) into (7.10) to obtain the time-reversed qsde as

ȧ(t) =− i
h̄
[a(t),HSYS]+

γ
2

a(t)−√γaIN(t) (7.17)

where we define the output field operator as
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aOUT(t) =
1√
2π

∞∫

−∞

dωe−iω(t−t1)b1(ω) (7.18)

(Note that the phase convention between left going and right going external fields re-
quired for the boundary condition has been explicitly incorporated in the definitions
of aIN, aOUT). The input and output fields are then seen to be related by

aIN(t)+ aOUT(t) =
√γa(t) (7.19)

This represents a boundary condition relating each of the far field amplitudes outside
the cavity to the internal cavity field. Interference terms between the input and the
cavity field may contribute to the observed moments when measurements are made
on aOUT.

7.2 Linear Systems

For many systems of interest the Heisenberg equations of motion are linear and may
be written in the form

d
dt

a(t) = Aa(t)− γ
2

a(t)+
√γaIN(t) , (7.20)

where

a(t) =
(

a(t)
a†(t)

)
, (7.21)

aIN(t) =
(

aIN(t)
a†

IN(t)

)
, (7.22)

Define the Fourier components of the intracavity field by

a(t) =
1√
2π

∞∫

−∞

e−iω(t−t0)a(ω)dω (7.23)

and a frequency component vector

a(ω) =
(

a(ω)
a†(ω)

)
(7.24)

where a†(ω) is the Fourier transform of a†(t).
The equations of motion become

[
A+

(
iω− γ

2

)
1
]

a(ω) =−
√

γaIN(ω) . (7.25)
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However, we may use (7.18) to eliminate the internal modes to obtain

aOUT(ω) =−
[
A+

(
iω +

γ
2

)
1
][

A+
(

iω− γ
2

)
1
]−1

aIN(ω) . (7.26)

To illustrate the use of this result we shall apply it to the case of an empty one-sided
cavity. In this case the only source of loss in the cavity is through the mirror which
couples the input and output fields. The system Hamiltonian is

HSYS = h̄ω0a†a .

Thus

A =
(
−iω0 0

0 iω0

)
. (7.27)

Equation (7.26) then gives

aOUT(ω) =
γ
2 + i(ω−ω0)
γ
2 − i(ω−ω0)

aIN(ω) . (7.28)

Thus there is a frequency dependent phase shift between the output and input. The
relationship between the input and the internal field is

a(ω) =
√γ

γ
2 − i(ω−ω0)

aIN(ω) , (7.29)

which leads to a Lorentzian of width γ/2 for the intensity transmission function.

7.3 Two-Sided Cavity

A two-sided cavity has two partially transparent mirrors with associated loss coef-
ficients γ1 and γ2, as shown in Fig. 7.2. In this case there are two input ports and
two output ports. The equation of motion for the internal field is then given by an
obvious generalisation as

da(t)
dt

=−iω0a(t)− 1
2
(γ1 + γ2)a(t)+

√γ1aIN(t)+
√γ2bIN(t) . (7.30)

Fig. 7.2 A schematic representation of the cavity field and the input and output fields for a
double-sided cavity
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The relationship between the internal and input field frequency components for an
empty cavity is then

a(ω) =
√γ1aIN(ω)+√γ2bIN(ω)
( γ1+γ2

2

)
− i(ω−ω0)

. (7.31)

The relationship between the input and output modes may be found using the bound-
ary conditions at each mirror, see (7.19),

aOUT(t)+ aIN(t) =
√γ1a(t) , (7.32a)

bOUT(t)+ bIN(t) =
√γ2a(t) . (7.32b)

We find

aOUT(ω) =
[ γ1−γ2

2 + i(ω−ω0)
]

aIN(ω)+√γ1γ2bIN(ω)
γ1+γ2

2 − i(ω−ω0)
(7.33)

For equally reflecting mirrors γ1 = γ2 = γ this expression simplifies to

aOUT(ω) =
i(ω−ω0)aIN(ω)+ γbIN(ω)

γ− i(ω−ω0)
. (7.34)

Near to resonance this is approximately a through pass Lorentzian filter

aOUT(ω)≈ γbIN(ω)
γ− i(ω−ω0)

, (7.35)

This is only an approximate result, the neglected terms are needed to preserve
the commutation relations. Away from resonance there is an increasing amount of
backscatter. In the limit |ω−ω0|≫ γ the field is completely reflected

aOUT(ω) =−aIN(ω) . (7.36)

Before going on to consider interactions within the cavity we shall derive some
general relations connecting the two time correlation functions inside and outside
the cavity.

7.4 Two Time Correlation Functions

Integrating (7.7) over ω , and using (7.13) gives

aIN(t) =
√γ
2

a(t)− 1√
2π

∞∫

−∞

dωb(ω , t) . (7.37)
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Let c(t) be any system operator. Then

[c(t),
√

γaIN(t)] =
γ
2
[c(t),a(t)] . (7.38)

Now since c(t) can only be a function of aIN(t ′) for earlier times t ′ < t and the input
field operators must commute at different times we have

[c(t),
√γaIN(t ′)] = 0, t ′ > t . (7.39)

Similarly

[c(t),
√γaOUT(t ′)] = 0, t ′ < t . (7.40)

From (7.40 and 7.18) we may show that

[c(t),
√γaIN(t ′)] = γ[c(t),a(t)], t ′ < t . (7.41)

Combining (7.38–7.41) we then have

[c(t),
√γaIN(t ′)] = γ0(t− t ′)[c(t),a(t ′)] , (7.42)

where θ (t) is the step function

θ (t) =

⎧
⎪⎨

⎪⎩

1 t > 0,
1
2 t = 0,

0 t < 0.

(7.43)

The commutator for the output field may now be calculated to be

[aOUT(t),a†
OUT(t ′)] = [aIN(t),a†

IN(t ′)] (7.44)

as required.
For the case of a coherent or vacuum input it is now possible to express vari-

ances of the output field entirely in terms of those of the internal system. For
an input field of this type all moments of the form ⟨a†

IN(t)aIN(t ′)⟩, ⟨a(t)aIN(t ′)⟩,
⟨a†(t)aIN(t ′)⟩, ⟨a†

IN(t)a(t ′)⟩, and ⟨a†
IN(t)a†(t ′)⟩ will factorise. Using (7.18) we find

⟨a†
OUT(t),aOUT(t ′)⟩= γ⟨a†(t),a(t ′)⟩ , (7.45)

where
⟨U, V ⟩ ≡ ⟨U V ⟩− ⟨U⟩⟨V⟩ . (7.46)

In this case there is a direct relationship between the two time correlation of the
output field and the internal field. Consider now the phase dependent two time cor-
relation function
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⟨aOUT(t),aOUT(t ′)⟩= ⟨aIN(t)−√γa(t),aIN(t ′)−√γa(t ′)⟩

= γ⟨a(t),a(t ′)⟩−√γ⟨[aIN(t ′),a(t)]⟩

= γ⟨a(t),a(t ′)⟩+ γθ (t ′ − t)⟨[a(t ′),a(t)]⟩

= γ⟨a(max(t,t ′)),a(min(t, t ′))⟩ . (7.47)

In this case the two time correlation functions of the output field are related to the
time ordered two time correlation functions of the cavity field.

These results mean that the usual spectrum of the output field, as given by the
Fourier transform of (7.45), will be identical to the spectrum of the cavity field. The
photon statistics of the output field will also be the same as the intracavity field.
Where a difference will arise, is in phase-sensitive spectrum such as in squeezing
experiments.

7.5 Spectrum of Squeezing

The output field from the cavity is a multi mode field. Phase-dependent properties
of this field are measured by mixing the field, on a beam splitter, with a known
coherent field – the local oscillator, as discussed in Sect. 3.8. The resulting field
may then be directed to a photodetector and the measured photocurrent directed to
various devices such as a noise-power spectrum analyser to produce a spectrum,
S(ω). If we write the signal field as aout(t) and the local oscillator is aLO(t), the
average photo current is proportional to

i(t) = (1−η)⟨a†
LO(t)aLO(t)⟩+

√
η(1−η)⟨aOUT(t)a†

LO(t)+ a†
OUT(t)aLO(t)⟩

+η⟨a†
OUT(t)aOUT(t)⟩ (7.48)

If (1−η)⟨a†
LO(t)aLO(t)⟩ >> η⟨a†

OUT(t)aOUT(t)⟩, we can neglect the last term in
(7.48). If the local oscillator is in a coherent state ⟨aLO(t)⟩ = |β |eiθ e−iΩt , then
not only the average current, but all its moments are determined by the quantum
statistics of the quadrature phase operator

XOUT
θ = aOUTe−i(θ−Ωt) + a†

OUTe−i(θ−Ωt) (7.49)

In particular, the noise power spectrum of the photocurrent is given by

S(ω,θ) =
∫ ∞

−∞
dt e−iωt⟨: XOUT

θ (t),XOUT
θ (0) :⟩ (7.50)

where: indicates normal ordering. The combination aOUTeiΩt is simply the defini-
tion of the output field in the interaction picture defined at frequency Ω. Using (7.47)
and (7.49) this may be written in terms of the intracavity field as
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S(ω,θ) = γ
∫ ∞

−∞
dt e−iωtT ⟨: Xθ(t),Xθ(0) :⟩ (7.51)

where T denotes time-ordering and Xθ(t) intracavity quadrature phase operator in
an interaction picture at frequency, Ω, defined by the local oscillator frequency,

Xθ(t) = a(t)e−iθ + a†(t)eiθ (7.52)

Conventionally we define the in-phase and quadrature-phase operators as X1 =
Xθ=0, X2 = Xθ=π/2.

7.6 Parametric Oscillator

We shall now proceed to calculate the squeezing spectrum from the output of a
parametric oscillator. Below threshold the equations for the parametric oscillator
are linear and hence we can directly apply the linear operator techniques. When
the equations are nonlinear such as for the parametric oscillator above threshold,
then linearization procedures must be used. One procedure using the Fokker–Planck
equation is described in Chap. 8.

Below threshold the pump mode of the parametric oscillator may be treated clas-
sically. It can then be described by the Hamiltonian

H = h̄ωa†a +
ih̄
2

(εa†2− ε∗a2)+ aΓ† + a†Γ , (7.53)

where ε = εpχ and εp is the amplitude of the pump, and χ is proportional to the non-
linear susceptibility of the medium. Γ is the reservoir operator representing cavity
losses. We consider here the case of a single ended cavity with loss rate γ1.

The Heisenberg equations of motion for a(t) are linear and given by (7.20) where

A =
( γ1

2 −ε
−ε∗ γ1

2

)
. (7.54)

We can obtain an expression for the Fourier components of the output field
from (7.26)

aOUT(ω) =
1[( γ1

2 − iω
)2− |ε|2

]
{[( γ1

2

)2
+ ω2 + |ε|2

]

×aIN(ω)+ εγ1a†
IN(−ω)

}
. (7.55)

Defining the quadrature phase operators by

2aOUT = eiθ/2(XOUT
1 + iXOUT

2 ) , (7.56)
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where θ is the phase of the pump, we find the following correlations:

⟨: XOUT
1 (ω),XOUT

1 (ω ′) :⟩= 2γ1|ε|( γ1
2 − |ε|

)2 + ω2
δ (ω + ω ′) , (7.57)

⟨: XOUT
2 (ω),XOUT

2 (ω ′) :⟩= −2γ1|ε|( γ1
2 + |ε|

)2 + ω2
δ (ω + ω ′) , (7.58)

where the input field aIN has been taken to be in the vacuum.
The δ function in (7.57 and 7.58) may be removed by integrating over ω ′ to give

the normally ordered spectrum: SOUT(ω):. The final result for the squeezing spectra
of the quadrature is

SOUT
1 (ω) = 1+ : SOUT

1 (ω) := 1 +
2γ1|ε|( γ1

2 − |ε|
)2 + ω2

, (7.59)

SOUT
2 (ω) = 1+ : SOUT

2 (ω) := 1− 2γ1|ε|( γ1
2 + |ε|

)2 + ω2
, (7.60)

These spectra are defined in a frame of frequency Ω so that ω = 0 is on cavity
resonance.

The maximum squeezing occurs at the threshold for parametric oscillation |ε| =
γ1/2 where

SOUT
1 (ω) = 1 +

(γ1

ω

)2
, (7.61)

SOUT
2 (ω) = 1− γ2

1

γ2
1 + ω2

, (7.62)

Thus the squeezing occurs in the X2 quadrature which is π/2 out of phase with the
pump. The light generated in parametric oscillation is therefore said to be phase
squeezed.

In Fig. 7.3 we plot SOUT
2 (ω) at threshold. We see that at ω = 0, that is the cav-

ity resonance, the fluctuations in the X2 quadrature tend to zero. The fluctuations in
the X1 quadrature on the other hand diverge at ω = 0. This is characteristic of crit-
ical fluctuations which diverge at a critical point. In this case however the critical

Fig. 7.3 A plot of the spec-
trum of the squeezed quadra-
ture for a cavity containing a
parametric amplifier with a
classical pump. Solid: single-
sided cavity with γ1 = γ2,
dashed: double-sided cavity
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flucuations are phase dependent. As the fluctuations in one phase are reduced to zero
the fluctuations in the other phase necessarily diverge. This characteristic of good
squeezing near critical points is found in other phase dependent nonlinear optical
systems [2]. This behaviour is in contrast to the threshold for laser oscillation where
the critical fluctuations are random in phase.

7.7 Squeezing in the Total Field

The squeezing in the total field may be found by integrating (7.62) over ω . At thresh-
old we find

STOT
2 =

∫ (
1− γ2

1

γ2
1 + ω2

)
dω =

γ1

2
. (7.63)

The squeezing in the total field is given by the equal time correlation functions

⟨a,a⟩OUT = γ1⟨a,a⟩,
⟨a,a†⟩OUT = γ1⟨a,a†⟩ . (7.64)

Hence, the squeezing in the internal field is

V (X2) =
1
2

. (7.65)

Thus the internal field mode is 50% squeezed, in agreement with the calculations
of Milburn and Walls [3]. This can be surpassed in the individual frequency compo-
nents of the output field which have 100% squeezing for ω = 0. It is the squeezing
in the individual frequency components of the output field which may be measured
by a spectrum analyser following a homodyne detection scheme.

7.8 Fokker–Planck Equation

We shall now give an alternative method for evaluating the squeezing spectrum. This
converts the operator master equation to a c-number Fokker–Planck equation. This is
a useful technique when the operator equations are nonlinear. Standard linearization
techniques for the fluctuations may be made in the Fokker–Planck equation. We
shall consider applications of this technique to nonlinear systems in Chap. 8.

We shall first demonstrate how time and normally-ordered moments may be cal-
culated directly using the P representation. We consider the following time- and
normally-ordered moment
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T ⟨: X1(t)X1(0) :⟩=e−2iθ ⟨a(t)a(0)⟩+ e2iθ⟨a†(0)a†(t)⟩
+ ⟨a†(t)a(0)⟩+ ⟨a†(0)a(t)⟩ . (7.66)

The two-time correlation functions may be evaluated using the P representation
which determines normally-ordered moments. Thus equal time moments of the
c-number variables give the required normally-ordered operator moments. The two
time moments imply precisely the time ordering of the internal operators that are
required to compute the output moments. This can be seen by noting that the evolu-
tion of the system will in general mix a† and a. Hence a(t + τ) contains both a(t)
and a†(t), τ > 0. In a normally-ordered two time product a(t + τ) must therefore
stand to the left of a(t), similarly a†(t + τ) must stand to the right of a†(t). Thus

⟨α(t + τ)α(t)⟩p = ⟨a(t + τ)a(t)⟩ , (7.67)

⟨α∗(t + τ)α∗(t)⟩p = ⟨a†(t)a†(t + τ)⟩ , (7.68)

where the left-hand side of these equations represent averages of c-number vari-
ables over the P representation. The normally-ordered output correlation matrix de-
fined by

: COUT(τ) :=
(
⟨aOUT(t + τ),aOUT(t)⟩ ⟨a†

OUT(t),aOUT(t + τ)⟩
⟨a†

OUT(t + τ),aOUT(t)⟩ ⟨a†
OUT(t + τ),a†

OUT(t)⟩

)
(7.69)

is given by

: COUT(τ) : = γ
(
⟨α(t + τ),α(t)⟩ ⟨α(t + τ),α∗(t)⟩
⟨α∗(t + τ),α(t)⟩ ⟨α∗(t + τ),α∗(t)⟩

)

≡ γCp(τ) . (7.70)

The two time correlation functions for the output field may be calculated directly
from the correlation functions of the stochastic variables describing the internal field
using the P representation.

For nonlinear optical processes the Fokker–Planck equation for the P function
may have nonlinear drift terms and nonconstant diffusion. In such circumstances
we first linearise the equation about the deterministic steady states, to obtain a linear
Fokker–Planck equation of the form

∂P
∂ t

(α) =
(

∂
∂αi

Aiαi +
1
2

∂ 2

∂αi∂α j
Di j

)
P(α) , (7.71)

where A is the drift matrix, and D is the diffusion matrix. The linearised descrip-
tion is expected to give the correct descriptions away from instabilities in the de-
terministic equations of motion. For fields exhibiting quantum behaviour, such as
squeezing, D is non-positive definite and a Fokker–Planck equation is not defined
for the Glauber–Sudarshan P function. In these cases a Fokker–Planck equation is



140 7 Input–Output Formulation of Optical Cavities

defined for the positive P representation, where α∗ is replaced by α† an independent
complex variable as described in Chap. 6.

The spectral matrix S(ω) is defined as the Fourier transform of Cp(τ). In a lin-
earised analysis it is given by

S(ω) = γ(A+ iωI)−1D(AT − iωI)−1 . (7.72)

The squeezing spectrum for each quadrature phase is then given by

: SOUT
1 (ω) := γ[e−2iθS11(ω)+ e2iθS22(ω)+ S12(ω)+ S21(ω)] (7.73)

: SOUT
2 (ω) := γ[−e−2iθS11(ω)− e2iθS22(ω)+ S12(ω)+ S21(ω)] (7.74)

These spectra are defined in a frame of frequency Ω (the cavity-resonance fre-
quency) so that ω = 0 corresponds to the cavity resonance.

It should be noted that in the above derivation there is only one input field and one
output field, that is, there is only one source of cavity loss. Thus the above results
only apply to a single-ended cavity; one in which losses accrue only at one mirror.

If there are other significant losses from the cavity the γ appearing in (7.60 and
7.61) is not the total loss but only the loss from the mirror through which the output
field of interest is transmitted.

The above procedure enables one to calculate the squeezing in the output field
from an optical cavity, provided the internal field may be described by the linear
Fokker–Planck equation (7.71).

Alternatively the squeezing spectrum for the parametric oscillator may be calcu-
lated using the Fokker–Planck equation. The Fokker–Planck equation for the dis-
tribution P(α) for the system described by the Hamiltonian (7.53) may be derived
using the techniques of Chap. 6.

∂P(α)
∂ t

=−
{(

ε∗ ∂
∂α∗α + ε ∂

∂α α∗
)

+
γ1

2

(
∂

∂α∗α∗+ ∂
∂α α

)

+
1
2

[
ε∗ ∂ 2

∂α∗2 + ε ∂ 2

∂α2

]}
P(α) (7.75)

The drift and diffusion matrices are

A =
( γ1

2 −ε
−ε∗ γ1

2

)
, D =

(
ε 0
0 ε∗

)
. (7.76)

Direct application of (7.72–7.74) yields the squeezing spectra given by (7.59 and
7.60).
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Exercises

7.1 Calculate the squeezing spectrum for a degenerate parametric oscillator with
losses γ1 and γ2 at the end mirrors.

7.2 Calculate the squeezing spectrum for a non-degenerate parametric oscillator.
[Hint: Use the quadratures for a two mode system described in (5.49)].
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